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Abstract
SU(3)-invariant ‘spin’ chains with a single impurity, such as a modified
exchange coupling on one link, are analysed using boundary conformal field
theory techniques. These chains are equivalent to a special case of the ‘tJV ’
model, i.e. the tJ model with a nearest-neighbour repulsion added. In the
continuum limit they are equivalent to two free bosons at a special value of the
compactification radii. The SU(3) symmetry, which is made explicit in this
formulation, provides insight into the exact solution of a non-trivial boundary
critical point found earlier in another formulation of this model as a theory of
quantum Brownian motion.

PACS numbers: 7510, 0530J, 0540J, 1125H, 6460

1. Introduction

Recently, there has been considerable interest in conformal field theory (CFT) with boundaries
in the context of open string theory, classical statistical mechanics and quantum impurity
problems in condensed matter physics. Of particular interest are certain non-trivial boundary
critical points first discovered [1, 2] in the context of a constriction in a quantum wire. While
the continuum limit of these models is simply two free bosons (one for charge and one for spin),
the non-trivial boundary critical points do not correspond to any variant of simple Dirichlet
(D) and Neumann (N) boundary conditions. They correspond to boundary critical points with
intermediate (neither 0 nor 1) transmission amplitude through the constriction. The original
approach of Kane and Fisher [2] was only able to study them using a type of ε-expansion
around limiting values of the compactification radii or bulk interaction parameters where
they became trivial. Later Yi and Kane [3] reinvestigated these critical points in the context
of a model of quantum Brownian motion on a triangular lattice finding a special value of
compactification radii where the non-trivial critical point could be solved exactly. This special
point was very recently investigated by the present authors [4] using the CFT techniques of
conformal embedding and fusion, relating it to the three-state Potts model with a boundary [5].
However, a general solution for these non-trivial boundary critical points, for all values of the
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compactification radii where they occur is still lacking. More generally, a framework seems
to be lacking for understanding non-trivial boundary critical points in multi-component free
boson theories.

The purpose of the present work is to provide yet another view of the special soluble
point. In this case the microscopic formulation is an SU(3) ‘spin’ chain with the objects
transforming under the fundamental representation of SU(3) at each lattice site and a
permutation Hamiltonian. We will show that the SU(3) symmetry is sufficient to uniquely
pick out the solvable non-trivial critical point without any fine-tuning. It is convenient to
introduce three fermion annihilation operators ηjα , on each site j , with α = 0, 1, 2 and a
single-occupancy constraint:

η
†α
j ηjα = 1. (1.1)

We use a superscript for annihilation operators and repeated indices (one upper and one lower)
are always summed. The permutation Hamiltonian can then be written as

H = 1
2

∑
j

Jjη
†α
j ηβjη

†β
j+1ηj+1α. (1.2)

This is the three-component Lai–Sutherland model [6] in the case where all three objects
obey fermionic statistics. (The same model is obtained if all three objects obey bosonic
statistics.) This model is equivalent to a special case of the ‘tJV ’ model, i.e. the tJ model
with an additional nearest-neighbour repulsion, as we review in section 4. This model is
Bethe ansatz integrable and has a gapless excitation spectrum. Its continuum limit [10] is the
SU(3)1 Wess–Zumino–Witten (WZW) nonlinear σ -model. We will study this model in the
case where one or more links have a modified exchange coupling Jj . All other links have a
fixed antiferromagnetic exchange coupling J > 0. The behaviour is quite different than that
of the corresponding SU(2) spin chains (with S = 1/2). In the SU(2) case modifying one link
produces a renormalization group (RG) flow to an open chain fixed point, corresponding to
the exchange coupling on the modified link renormalizing to 0 (or ∞). However, in the SU(3)
case a flow instead occurs to a non-trivial fixed point which does not correspond to an open
chain nor to a uniform chain. This corresponds to the intermediate transmission coefficient
fixed point [1,2] in the tJV formulation. The SU(3) symmetry of the model makes it possible
to study the fixed point using fusion. Our approach is to first regard the right-movers as a
second branch of left-movers, reflecting them at the impurity location. The two copies of
left-moving SU(3)1 WZW excitations can then be represented by the conformal embedding

SU(3)1 × SU(3)1 ≡ SU(3)2 × Potts. (1.3)

This corresponds to the sum of central charges

2 + 2 = 16/5 + 4/5. (1.4)

The non-trivial critical point can be reached by fusion either in the SU(3)2 or Potts sector. We
note that the original solution of this model by Yi and Kane [3] mapped it onto the three-channel
SU(2) Kondo problem, corresponding to the SU(2)3 WZW model. This model is related by a
duality transformation to the SU(3)2 WZW model. We show that the spinful Luttinger liquid
model at the value of the bulk interaction parameters, gσ = 2, gρ = 2/3, where the non-trivial
critical point can be studied exactly, has an SU(3) symmetry. This provides the most natural
understanding of what is special about this point in parameter space.

In the next section we review the analogous boundary critical phenomena in the ordinary
(S = 1/2) SU(2) chain. Section 3 contains our new results on the SU(3) chain. Section 4
discusses the connection with the tJV model. Section 5 discusses more general models where
the SU(3) symmetry is broken down to SU(2) × U(1), either at the boundary only, or also
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in the bulk. In Section 6 we discuss the connection of the SU(3) spin chain boundary critical
behaviour with that which occurs in the two-channel SU(3)Kondo model and in the triangular
lattice quantum Brownian motion model. We also comment on the extension of this work to
the general SU(N) case.

2. SU(2) case

Here we consider an ordinary SU(2) S = 1/2 chain with a single impurity. The Hamiltonian
is written as

H =
∑
j

JjSj · Sj+1. (2.1)

The exchange couplings are Jj = J on all links except for one where J0 = J ′ or two
neighbouring links where J0 = J1 = J ′. It was argued in [7] that the only fixed points that
occur in this problem correspond to the uniform and open chain. Modifying one link leads
to a flow to the open chain fixed point. If J ′ < J , we may think of J ′ as renormalizing to
0, corresponding to an open chain. If J ′ > J , we may think of J ′ as renormalizing to ∞.
In this limit the two spins at sites 0 and 1 form a singlet and decouple from the rest of the
spins which therefore correspond again to an open chain. Thus J ′ = J represents an unstable
fixed point whereas J ′ = 0 or ∞ are stable fixed points. This conjecture was based on an
analysis of the operator content at the uniform and open fixed points. This can be conveniently
performed using non-Abelian bosonization [11]. The spin operators in the continuum limit
are represented in terms of the fundamental field gαβ and currents JL,R of the SU(2)1 WZW
model as

Sj ≈ (JL + JR) + constant(−1)j tr(gσ). (2.2)

By using the operator product expansion (OPE) one can show that

Sj · Sj+1 ≈ constant(−1)j trg + constant × JL · JR. (2.3)

Thus the modified link corresponds to a local interaction at the origin, in the low-energy
effective Hamiltonian of the form:

δH ∝ (J ′ − J )trg(0). (2.4)

Since g has scaling dimension 1/2, this is relevant. (Recall that interactions occurring at only
one point are relevant if they have dimension < 1.) To check the stability of the open fixed
point we must consider its boundary operator content. Boundary operators are contained in
the chiral part of the SU(2) WZW theory and, in this case, just correspond to the identity
conformal tower. Thus the lowest-dimension operator corresponding to the spin at the end
of an open chain is the current, of dimension 1. Coupling the two boundary spins together
across the open link gives an operator of dimension 2 which is irrelevant. This conjecture
is thus shown to be consistent with the stability of the open and uniform chain fixed points.
The conjecture was further tested by numerical work [7]. The situation is quite different for
two neighbouring modified links. In that case the uniform chain fixed point is stable and the
open chain fixed point is unstable. The crucial difference at the uniform chain fixed point is
that the relevant operator trg cancels due to the (−1)j factor in equation (2.3) leaving only
the irrelevant operator d trg/dx of dimension 3/2. On the other hand, if we consider the limit
J ′ → 0 on two links, we obtain two open chains and one decoupled spin. The RG equations
in this case are the same as in the two-channel S = 1/2 Kondo problem (the two channels
corresponding to the left and right side of the impurity spin). An infinitesimal positive J ′ is
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marginally relevant. In this case we think of the perturbed chain as ‘healing’. The effects of
the local perturbation disappear in the low-energy effective Hamiltonian.

These two fixed points and the various RG flows between them can also be studied by
the fusion technique [8], which played an essential role in the CFT study of the multi-channel
Kondo problem. This gives a way of determining new boundary critical points from a starting
reference critical point. In some cases this leads to the discovery of new critical points
or a possible proof of the absence of additional critical points given certain completeness
assumptions.

A starting point for fusion is to regard the right-movers as a second branch of left-movers.
This is possible because left- and right-movers are, in a sense, decoupled in the conformal
field theory; it is only the impurity interactions which couple them together. (We note that true
boundary models, such as a spin chain on a semi-infinite line with interactions near the origin,
can also be formulated entirely in terms of left-movers on the infinite line. However, in this
case, no doubling of the number of degrees of freedom occurs.) In the spin chain problem we
thus obtain a model with two flavours of left-moving WZW excitations, SU(2)1 × SU(2)1,
defined on an infinite line with the impurity interactions at the origin. It turns out [8] that to
study the fixed points using fusion it appears necessary to then use a conformal embedding:

SU(2)1 × SU(2)1 = SU(2)2 × Ising. (2.5)

The SU(2)2 excitations carry the diagonal SU(2) quantum numbers and the IsingZ2 symmetry
corresponds to switching the two SU(2)1 groups, or equivalently a parity transformation in
the original formulation. The central charge adds up correctly, recalling that c = 1, 3/2 and
1/2 for SU(2)1, SU(2)2 and Ising respectively. The original non-chiral WZW fields at x = 0
can now be represented as:

JL + JR = J tr(gσ) ∝ φ trg ∝ ε. (2.6)

Here J is the (chiral) current operator in SU(2)2, φ is the spin-1 primary field of dimension 1/2
and ε is the energy operator of the Ising model, also of dimension 1/2. Note that these are all
chiral operators and the dimensions of ε and g are 1/2 of the dimensions of the corresponding
scalar operators in the bulk Ising or WZW models (corresponding to the ‘left-moving parts’).
In particular, in the case of the Ising model, we could think of ε as corresponding to the chiral
Majorana fermion field. The next step is to represent the various partition functions that occur
with either open or uniform b.c.’s at both ends, for a finite system of length l, in terms of this
conformal embedding. We think of the system as consisting of two sections of chain, both of
length l, which may either be joined together, or separated at their two ends, at x = 0 and l.
Thus the uniform–uniform system is a periodic chain of length 2l, the uniform–open system is
a single open chain of length 2l and the open–open system is two open chains, both of length l.
We must also keep track of whether the number of microscopic S = 1/2 operators is even or
odd, giving a total of seven different partition functions. We express these partition functions,
at temperature β−1, in terms of the modular parameter

q ≡ e−πβ/l . (2.7)

We write these partition functions in terms of the (chiral) characters χ(1)
j of the SU(2)1 model

for j = 0 or 1/2, χ(2)
j of the SU(2)2 model for j = 0, 1/2 or 1, and χ I

j of the Ising model for
j = 0, 1/2 and 1. In the Ising case we have labelled the identity operator, order parameter and
energy operator in terms of a parameter j = 0, 1/2 and 1, respectively. This is appropriate due
to an isomorphism of the fusion rule coefficients and modular S-matrix between the SU(2)2

and Ising CFT’s. We also carefully take into account the universal 1/l terms in the ground-state
energy which are −π/12l for a periodic chain of length 2l and −π/24l for a (single) open
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chain of length l. We thus obtain the following partition functions, written first in terms of
SU(2)1 × SU(2)1 characters and then in terms of SU(2)2 × Ising characters:

q1/12Ze
UU(q) =

[
χ
(1)
0 (q)

]2
+

[
χ
(1/2)
0 (q)

]2
=

[
χ
(2)
0 (q) + χ(2)

1 (q)
] [
χ I

0(q) + χ I
1(q)

]
q1/12Zo

UU(q) = 2χ(1)
0 (q)χ

(0)
1/2(q) = 2χ(2)

1/2(q)χ
I
1/2(q)

q1/12Ze
UO(q) = q1/16χ

(1)
0 (

√
q) =

[
χ
(2)
0 (q) + χ(2)

1 (q)
]
χ I

1/2(q)

q1/12Zo
UO(q) = q1/16χ

(1)
1/2(

√
q) = χ

(2)
1/2(q)

[
χ I

0(q) + χ I
1(q)

]
q1/12Zee

OO(q) =
[
χ
(1)
0 (q)

]2
= χ

(2)
0 (q)χ I

0(q) + χ(2)
1 (q)χ I

1(q)

q1/12Zeo
OO(q) = χ

(1)
1/2(q)χ

(1)
0 (q) = χ

(2)
1/2(q)χ

I
1/2(q)

q1/12Zoo
OO(q) =

[
χ
(1)
1/2(q)

]2
= χ

(2)
0 (q)χ I

1(q) + χ(2)
1 (q)χ I

0(q)

(2.8)

Here the superscripts denote even or odd length chains and the lower subscripts denote uniform
or open b.c.’s. Now we use the fusion rules, which are isomorphic for SU(2)2 and Ising. These
are

1/2 × 1/2 = 0 + 1 1 × 1/2 = 1/2 1 × 1 = 0. (2.9)

We can now check that fusion correctly takes us between the various partition functions in a
way which corresponds to the various RG flows. For instance, suppose we start with Zee

OO,
open–open b.c.’s with an even number of spins in each chain. Now consider adding one extra
spin at x = 0 which is weakly (and symmetrically) coupled to both chains. As discussed above,
this induces a Kondo-type RG flow to the uniform–open fixed point, now with an odd number
of sites. Since we have induced this flow by coupling to an S = 1/2 impurity it is natural to
associate this flow with fusion with S = 1/2. In fact, this is exactly what occurs in the Kondo
problem. Now applying the fusion rules to Zee

OO, we see that both characters χ(2)
0 and χ(2)

1 get
replaced by χ(2)

1/2, thus turning Zee
OO into Zo

UO. Similarly fusion turns Zoo
OO into Zo

UO, and Ze0
OO

into Ze
UO. We now add another spin at x = l, coupled to both chain ends and thus inducing a

Kondo-type flow to the UU fixed points. Again it can be checked that fusion turns Ze
UO into

Zo
UU, and Zo

UO into Ze
UU. It is also interesting to start with the OO case and consider fusion

with the j = 1 primary. In this case we see that Zee
OO is interchanged with Zoo

OO while Zeo
OO

goes into itself. The associated RG flow now corresponds to introducing an S = 1 impurity at
x = 0 or two S = 1/2’s with a ferromagnetic coupling. The flow back to the open fixed point
corresponds to the S = 1 impurity being screened by one S = 1/2 spin from the end of each
chain. Alternatively, if we have two weakly ferromagnetically coupled S = 1/2 impurities, we
may think of one of them attaching onto the end of each chain and asymptotically decoupling
from each other. In either picture we end up getting the flow obtained from fusion. Similarly,
Ze

UO and Zo
UO go into themselves under fusion with j = 1.

We may also consider fusion in the Ising sector. Note that the OO partition functions
simply map into themselves under fusion with ε but map into the OU partition functions under
fusion with σ . The corresponding RG flows correspond to the two-impurity Kondo problem.
We can imagine adding two S = 1/2 impurities at x = 0 which couple to each other with
strength J ′′ and also couple one to each chain with strength J ′. The stable fixed points for this
problem are just the open chain. If J ′′ is too large compared to J ′, the two impurities just form
a singlet and decouple. If J ′′ is too small, then one impurity can couple onto the end of each
chain, the chains remaining open. However, if the ratio of J ′′ to J ′ is just right, then the system
can heal, flowing to the uniform fixed point. These three cases correspond, respectively, to the
inter-impurity singlet, Kondo screened and non-Fermi liquid fixed points in the two-impurity
Kondo problem. The second case (independent impurity screening by the chains) corresponds
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to fusion with ε while the uniform chain corresponds to fusion with σ . Again, the same type
of fusion was used in the CFT treatment of the two-impurity Kondo problem. We also note
that the same fusion process describes the effect of adding two more impurities at x = l to the
UO chain. Fusion with ε corresponds to attaching one spin to each open chain but fusion with
σ corresponds to the defect healing, producing a flow to the uniform fixed point.

The Ising symmetry may be given a physical interpretation. TheZ2 symmetry corresponds
to parity, reflection around the origin. One way of seeing this is to note that the boundary
operator introduced by a single modified link, trg(0), corresponds to ε after our conformal
embedding and this operator corresponds to a boundary magnetic field in the Ising model [12].
A single modified link breaks this symmetry explicitly, whereas two equally modified links
(between (−1) and 0 and between 0 and 1) do not. The analogue of Ising order in the
S = 1/2 chain is a spontaneously dimerized state. This does not occur for the Heisenberg
model, although it does with sufficiently strong next-nearest-neighbour interaction, as in the
Majumdar–Ghosh model [9]. The quasi-long range dimer–dimer correlation function indicates
that the Heisenberg model is in a critical state with respect to this type of order. Strengthening
the coupling on a single link locally favours one of the two dimer states. It is like applying
a boundary magnetic field to the critical Ising model. This is a relevant perturbation and in
the infrared limit is like applying a spin-up boundary condition. Thus the flow from uniform
to open fixed points in the spin chain corresponds to the flow from free to fixed boundary
conditions in the Ising model. In both cases the model is responding to a symmetry-breaking
perturbation acting only at the boundary.

The fact that no new partition functions are obtained by fusion with all primaries, starting
from OO b.c.’s, lends support to the conjecture that only open and uniform fixed points occur
in this problem. Conversely, the fact that U can be obtained from O supports the general
notion that fusion provides a complete set of fixed points starting from a suitable reference
fixed point. However, it must be admitted that the fusion construction has not added very much
to our understanding of the SU(2) spin chain. The two basic fixed points are both trivial and
could be obtained by elementary methods. As we shall see in the next section, the situation is
quite different in the SU(3) case. Now non-trivial fixed points occur which cannot be obtained
by elementary methods. Fusion provides a powerful method of solving for the properties of
these fixed points. Furthermore, it is seems reasonable to conjecture that the set of fixed points
obtained by fusion may give the complete set of conformally invariant boundary conditions
for the model.

3. SU(3) case

The Hamiltonian for the SU(3) ‘spin’ chain may be written as in equation (1.2) with the
constraint of equation (1.1). Alternatively, we may introduce generators of SU(3), T A, with
A = 1, 2, 3, . . . , 8, a complete set of traceless Hermitian matrices normalized so

trT AT B = (1/2)δAB (3.1)

and introduce associated operators

SAj ≡ η
†α
j (T A)βαηjβ. (3.2)

The Hamiltonian may then be written as

H =
∑
jA

JjS
A
j S

A
j+1. (3.3)

The continuum limit can be derived, for example, using a weak-coupling Hubbard model
representation and then extrapolating to an infinite Hubbard coupling constant [10]. We thus
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keep only Fourier modes of the fermion fields ηα near the Fermi points kF = ±π/3, introducing
left- and right-movers:

ηαj ≈ eiπj/3ηαL(j) + e−iπj/3ηαR(j). (3.4)

The resulting interacting fermion model can be treated using non-Abelian bosonization. We
thus introduce an SU(3)1 WZW nonlinear σ model field gαβ to represent the spin degrees
of freedom and an additional charge boson field. The charge boson develops a gap from
the Hubbard interaction and can be dropped from the Hamiltonian which is then just the
conformally invariant WZW model up to irrelevant interactions (and before including impurity
effects). The original spin operators are then represented at low energies as

SAj ≈ (JAL + JAR )(j) + [constant × ei2πj/3tr(g(j)T A) + h.c.] (3.5)

where JAL/R are the SU(3) currents

JAL,R ≡ η
†α
L/R(T

A)βαηβL,R. (3.6)

g has a scaling dimension of 2/3. Using the OPE it can be shown that∑
A

SAj S
A
j+1 ≈ [ei2πj/3 × constant × trg + h.c.] + constant ×

∑
A

JAL J
A
R . (3.7)

The 2kF part has dimension 2/3. We now consider a single modified exchange coupling J0 = J ′

between sites 0 and 1. This introduces the interaction in the low-energy effective Hamiltonian:

δH ∝ (J ′ − J )trg + h.c. (3.8)

Since this has dimension 2/3 < 1, it is relevant. We now consider the possible infrared fixed
point of the RG flow. In the case J ′ < J it is plausible that J ′ simply renormalizes to 0 as
in the SU(2) case corresponding to an open chain fixed point. However, the situation is now
quite different for J ′ > J . Unlike the SU(2) case, J ′ → ∞ is not a stable fixed point. In
the SU(3) case, if we take J ′ → ∞ we project the two ‘spins’ at sites 0 and 1 into the 3̄
representation, rather than into a singlet, as for SU(2). Even at J ′ → ∞ a residual interaction
of O(J ) exists between this effective 3̄ spin and the neighbouring spins at sites (−1) and 2.

Since the sign of this residual interaction is important, we calculate it explicitly. This is
most conveniently done in terms of the spin operators:

Sαβ ≡ η†αηβ − (1/3)δαβ . (3.9)

This acts on the three-representation state,

|α〉 ≡ η†α|0〉 (3.10)

as

Sαβ |γ 〉 = δ
γ

β |α〉 − (1/3)δαβ |γ 〉. (3.11)

The 3̄ state (on a single site) corresponds to two fermions:

|α,β〉 = −|β,α〉 = η†αη†β |0〉. (3.12)

The projected 3̄ state on sites 0 and 1, obtained at J ′ → ∞ can be written as

|α,β〉01 ≡ |α〉0 × |β〉1 − |β〉0 × |α〉1 (3.13)

where the first and second factor refer to sites 0 and 1 respectively. Now consider the action
of Sα0β on this 3̄ state:

Sα0β |γ,δ〉01 = δ
γ

β |α〉0 × |δ〉1 − δδβ |α〉0 × |γ 〉1 − (1/3)δαβ |γ,δ〉01. (3.14)

Finally we project this back into the low-energy 3̄ subspace, by antisymmetrizing, giving

PSα0β |γ,δ〉01 = (1/2)[δγβ |α,δ〉01 − δδβ |α,γ 〉01] − (1/3)δαβ |γ,δ〉. (3.15)
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Thus we see that, upon projecting into the low-energy subspace of the 3̄ representation,

PSα0,βP = (1/2)Sαeff,β − (1/6)δαβ . (3.16)

Therefore, the residual exchange interaction between site (−1) and the effective 3̄ spin has the
value J/2 > 0. The case of a small positive coupling to the effective 3̄ impurity spin gives
a Kondo type RG equation and is hence marginally relevant. Thus, it appears that J ′ does
not renormalize to ∞ when J ′ > J . It is therefore reasonable to expect that some sort of
non-trivial fixed point occurs in this problem. We construct this fixed point explicitly below
using the fusion method.

First, however, we consider the case of two modified (but equal) exchange couplings on
neighbouring links 0 –1 and 1–2. A difference immediately appears with the SU(2) case. The
relevant operator, constant× trg+h.c. appears in the SU(3) case because the oscillating factors
ei2πj/3 do not cancel between two neighbouring links. Thus modifying two neighbouring links
is also a relevant perturbation. We may consider the possible RG flows by again considering
the limit where J ′ → ∞ or 0. Note that when J ′ → ∞ , three neighbouring sites form an
SU(3) singlet:

εαβγ |α〉0 × |β〉1|γ 〉2. (3.17)

This effectively breaks the chain into two disconnected pieces, corresponding to the open fixed
point. Since this is a stable fixed point, it is plausible that it any J ′ > J flows to it. On
the other hand, when J ′ → 0, we get two chains with a Kondo coupling to an impurity in
the 3 representation. This corresponds to the two-channel SU(3) Kondo model, as can be
seen from the non-Abelian bosonization of this model [13]. The two channels correspond to
the decoupled chains on the two sides of the impurity. This Kondo interaction is marginally
relevant, so J ′ = 0 is not a stable fixed point. Thus it appears that there must be a non-trivial
fixed point with two modified links in the case J ′ < J .

We now wish to study this problem using the fusion method. To do this we must first
introduce an appropriate conformal embedding. Following the SU(2) case, we regard the
right-movers as a second branch of left-movers and then introduce an SU(3)2 WZW model
representing the diagonal SU(3) degrees of freedom. We then must introduce another CFT
representing the coset SU(3)1 × SU(3)1/SU(3)2. This turns out to be the three-state Potts
model:

SU(3)1 × SU(3)2 = SU(3)2 × Potts. (3.18)

The conformal charges add up correctly: 2 + 2 = 16/5 + 4/5. The SU(3)2 WZW model has
primary fields in the 3, 6 and 8 representations with scaling dimensions 4/15, 2/3 and 3/5,
respectively (as well as the conjugate fields in the 3̄ and 6̄ representations). The Potts model
contains two conjugate pairs of fields, σ , σ † of dimension 1/15 and ψ , ψ† of dimension 2/3
as well as the Hermitian field ε of dimension 2/5. Note that we only obtain the ‘chiral factors’
of the various primary operators and these scaling dimensions are all for these chiral factors.
The lattice ‘spin’ operators are then represented in terms of these degrees of freedom as

SAj ≈ JA + φA[ei2πj/3 × constant × σ + h.c.]. (3.19)

Here φA is the SU(3)2 adjoint representation field. The 2kF part of the spin produced is∑
A

SAj S
A
j+1 ≈ [ei2πj/3 × constant × ψ + h.c.]. (3.20)

We can again write down the partition functions corresponding to trivial uniform or open
boundary conditions, more or less by inspection. In this case we get a different result depending
on the length of the chains mod 3, represented by superscripts 0, 1 or 2. We find that it is
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necessary to introduce additional characters in the Potts sector which do not occur in the bulk
Potts spectrum but are legitimate conformal towers occurring in the bulk spectrum of the other
c = 4/5 CFT, the tetra-critical Ising model. This phenomena was already encountered in
our discussion of boundary critical points in the Potts model. Characters not appearing in the
bulk spectrum can occur in the spectrum with boundaries (in the open string channel only)
and can be used in constructing boundary conditions by fusion. These additional characters
correspond to primary fields of dimension 1/8, 13/8, 1/40 and 21/40. The partition functions
corresponding to the various uniform or open b.c.’s can then be written as follows, first in terms
of SU(3)1 × SU(3)1 characters and then in terms of SU(3)2× Potts characters:

q1/6Z0
UU(q) =

[
χ
(1)
1 (q)

]2
+

[
χ
(1)
3 (q)

]2
+

[
χ
(1)
3̄
(q)

]2

= χ
(2)
1 (q)

[
χP
I (q) + χP

ψ (q) + χP
ψ†(q)

]
+ χ(2)

8 (q)
[
χP
ε (q) + χP

σ (q) + χP
σ †(q)

]
q1/6Z1

UU(q) = 2χ(1)
1 (q)χ

(1)
3 (q) +

[
χ
(1)
3̄
(q)

]2

= χ
(2)
3 (q)

[
χP
ε (q) + χP

σ (q) + χP
σ †(q)

]
+ χ(2)

6̄
(q)

[
χP
I (q) + χP

ψ (q) + χP
ψ†(q)

]

q1/6Z2
UU(q) = 2χ(1)

1 (q)χ
(1)
3̄
(q) +

[
χ
(1)
3 (q)

]2

= χ
(2)
3̄
(q)

[
χP
ε (q) + χP

σ (q) + χP
σ †(q)

]
+ χ(2)

6 (q)
[
χP
I (q) + χP

ψ (q) + χP
ψ†(q)

]
q1/6Z0

UO(q) = q1/8χ
(1)
1 (

√
q) = χ

(2)
1 (q)χP

1/8(q) + χ(2)
8 (q)χP

1/40(q)

q1/6Z1
UO(q) = q1/8χ

(1)
3 (

√
q) = χ

(2)
3 (q)χP

1/40(q) + χ(2)
6̄
(q)χP

1/8(q)

q1/6Z2
UO(q) = q1/8χ

(1)
3̄
(
√
q) = χ

(2)
3̄
(q)χP

1/40(q) + χ(2)
6 (q)χP

1/8(q)

q1/6Z00
OO(q) =

[
χ
(1)
1 (q)

]2
= χ

(2)
1 (q)χP

I (q) + χ(2)
8 (q)χP

ε (q)

q1/6Z01
OO(q) = χ

(1)
1 (q)χ

(1)
3 (q) = χ

(2)
3 (q)χP

σ (q) + χ(2)
6̄
(q)χP

ψ (q)

q1/6Z02
OO(q) = χ

(1)
1 (q)χ

(1)
3̄
(q) = χ

(2)
3̄
(q)χP

σ †(q) + χ(2)
6 (q)χP

ψ†(q)

q1/6Z11
OO(q) =

[
χ
(1)
3 (q)

]2
= χ

(2)
6 (q)χP

I (q) + χ(2)
3̄
(q)χP

ε (q)

q1/6Z12
OO(q) = χ

(1)
3 (q)χ

(1)
3̄
(q) = χ

(2)
1 (q)χP

ψ (q) + χ(2)
8 (q)χP

σ (q)

q1/6Z22
OO(q) =

[
χ
(1)
3̄
(q)

]2
= χ

(2)
6̄
(q)χP

I (q) + χ(2)
3 (q)χP

ε (q).

(3.21)

Although we do not know formal proofs of these identities, we have checked them using
MATHEMATICA up to the level q40 in the expansion in q, in all cases.

Following our treatment of the SU(2) case in the previous section, we now begin with
the open–open boundary conditions and consider the effect of all possible fusion processes in
either SU(3)2 or Potts sectors. The fusion rules for SU(3)2 are

3 × 3 → 3̄ + 6 3 × 3̄ → 1 + 8 3 × 6 → 8

3 × 6̄ → 3̄ 3 × 8 → 3 + 6̄ 6 × 6 → 6̄ (3.22)

6 × 8 → 3̄ 6 × 6̄ → 1 8 × 8 → 1 + 8.

The fusion rules and modular S-matrix in the W -invariant sector of the Potts model are
equivalent to those of SU(3)2 with the identification:

1 → I 8 → ε 3 → σ
(3.23)

3̄ → σ † 6 → ψ 6̄ → ψ†.
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The fusion rules and modular S-matrix for the extended Potts algebra are given in tables
1 and 2 of [5]. We start with Z00

OO, although we do not expect to obtain a different result if
we begin with the other possible Zij

OO cases. Let us first consider fusion in the SU(3)2 sector.
We see that fusion with 3 (or equivalently 3̄) or 8 gives a new partition function, not in the list
in equation (3.21). On the other hand, fusion with 6 (or equivalently 6̄) gives Z11

OO (or Z22
OO).

These results are more or less what we should have expected based on the above discussion
of the RG flows. Fusion with 3 should correspond to weakly coupling one new impurity spin
to both chains at the origin. This is related to weakening two neighbouring links, in the case
of antiferromagnetic coupling, which was argued above to lead to a non-trivial fixed point.
Fusion with 3̄ would correspond to adding two impurity spins between the ends of the open
chains at the origin, with the two spins strongly coupled together antiferromagnetically in
order to obtain the 3̄ representation. This is related to the case of one strengthened link which
should also lead to a non-trivial fixed point. Fusion with 6 is related to adding two impurity
spins which are ferromagnetically coupled to each other. This is related to weakening the
(initially antiferromagnetic) coupling between two spins which was argued to lead to a trivial
fixed point, the open chain. The case of fusion with 8 is less obviously related to the previous
discussion. It is instructive, at this point, to consider a second fusion with the conjugate
operator, corresponding to the same process taking place at x = l. Fusion with 6 then 6̄
produces the open–open fixed point, as expected. On the other hand, fusion with 3 then 3̄ or
8 then 8 leads to the same new partition function, which corresponds to having the non-trivial
b.c. at both ends of the system. The fact that the same partition function results from either
double fusion process indicates that there is only one new fixed point occurring, not two. Next
we consider fusion in the Potts sector. We expect that this corresponds to adding three impurity
spins with various types of self-couplings. We find that fusion with σ (or equivalently σ †) or
ε leads to a non-trivial fixed point. This appears to be the same one obtained from SU(3)2

fusion, as seen by checking the result of double fusion. On the other hand, fusion withψ leads
to the Z12

OO partition function, indicating that we simply obtain a flow to open–open boundary
conditions. This seems to correspond to three impurity spins coupled asymmetrically; one
attaches to one chain and two attach to the other. Finally, we may consider fusion with the
extended Potts operators. We find that fusion with the dimension 1/8 or 13/8 operators gives
Z0

UO. This corresponds to coupling three impurity spins between the ends of the open chains
and obtaining the uniform fixed point. (This is an unstable fixed point for this process.)
Finally, fusion with the operators of dimensions 1/40 or 21/40 gives another new fixed point,
not equivalent to the one discussed earlier.

The first non-trivial fixed point, discussed above, can be given an interpretation related to
the Potts model. In the Potts model there is a ‘mixed’ fixed point corresponding to the Potts
variables on the boundary fluctuating back and forth between two of the three possible states.
We may interpret these three Potts states as corresponding to the three possible trimerization
patterns of the SU(3) spin chain, i.e. the trimers form on sites 3j − (3j + 1) − (3j + 2) or
(3j−1)−3j−(3j +1) or (3j−2)−(3j−1)−3j for all integer j . Note that two strengthened
neighbouring links on links 0 –1 and 1–2 favour trimer formation on 0 –1–2, corresponding
to a fixed b.c. in the Potts model and an open b.c. in the spin chain. Similarly one weakened
bond on 0 –1 favours the 1–2–3 trimerization pattern, again corresponding to the open b.c.
However, one strengthened bond on 0 –1 equally favours two trimerization patterns, 0 –1–2
or (−1) – 0 –1. We may think of the non-trivial fixed point as being one in which the trimers
resonate between these two states near the origin. This is very analogous to the mixed fixed
point in the Potts model. Hence it is appropriate to refer to this state in the SU(3) chain
as the mixed fixed point. Similarly, weakening two bonds on 0 –1 and 1–2 equally favours
two trimerization patterns 1–2–3 or (−1) – 0 –1. Again this gives the mixed fixed point. We
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note that fusion in the Potts sector of the SU(3) chain connects the fixed points in a way
which corresponds to that in the Potts model. Starting from a fixed b.c. in the Potts model,
fusion with ψ (or ψ†) gives the other fixed b.c.’s but fusion with σ , σ † or ε gives the mixed
b.c. Fusion with the 1/8 operator gives the free b.c. in the Potts model corresponding to the
uniform b.c. in the SU(3) chain. Fusion with the 1/40 operator in the Potts model gives a
new fixed point first discussed in [5]. This corresponds to the new fixed point in the SU(3)
chain. So far, we have been unable to understand what sort of microscopic impurity couplings
in the SU(3) chain would produce a flow to this new fixed point. A related difficulty is that
the Z3 symmetry in the impurity problems may only be defined in the low-energy continuum
limit. While this symmetry can be identified as translations by 0, 1 or 2 sites in the uniform
chain, this translational symmetry is always broken in the impurity models. Note that we were
able to circumvent the analogous problem in the case of the SU(2) chain with an impurity by
identifying the Z2 symmetry with reflection about a site, rather than translation by one site.
Both these symmetry operations have the effect of interchanging the two dimerized ground
states. On the other hand, in the SU(3) case there appear to be no analogous symmetries
which interchange the trimerized ground states and which remain symmetries with impurity
interactions present.

It is instructive to consider the boundary operator content at the mixed fixed point, obtained
by double fusion. This is

1 × I + 8 × I + (2×)8 × ε + 1 × ε. (3.24)

Here the first and second factors correspond to operators in the SU(3)2 and Potts sector,
respectively, and the factor of 2 indicates that two such operators occur. We see that there is
only one SU(3) symmetric relevant operator, 1× ε. This has a natural interpretation related to
the above discussion. The mixed fixed point corresponds to resonance between two different
trimerization patterns near the origin. Modifying exchange couplings so as to favour one of
these over the other is a relevant perturbation. For instance, if we obtain the mixed fixed point
by strengthening the coupling on link 0 –1, then strengthening the coupling on 1–2 is relevant
since it then favours the 0 –1–2 trimerization over (−1) – 0 –1. In fact, the corresponding
relevant operator also occurs at the mixed fixed point in the Potts model.

4. Connection with the tJV model

The SU(3) ‘spin’ chain is equivalent to the tJV model for a special choice of the parameters
J and V [6]. The Hamiltonian is

H =
∑
j

{
[−tPψ†a

j ψj+1,aP + h.c.] + JSj · Sj+1 + V njnj+1

}
. (4.1)

Here P projects out states with no double occupancy, and Sj and nj are the electron spin and
charge operators on site j :

Sj ≡ ψ
†a
j

σb
a

2
ψjb

nj ≡ ψ
†a
j ψja.

(4.2)

The spin indices, a, b, represented by Latin letters, are summed from 1 to 2 only. Greek letters
are used for the SU(3) indices summed over 0, 1, 2. This model is equivalent to the SU(3)
spin chain for J = 2t , V = 3t/2.

We remark that this is not the same as the supersymmetric tJ model which has J = 2t but
V = −t/2 = −J/4. (The latter is referred to as a tJ model rather than a tJV model because
the tJ model is sometimes written as in equation (4.1) with V = −J/4.)
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The equivalence of the SU(3) spin chain with this tJV model is established by writing
the SU(3) spin chain Hamiltonian in the form

H = 1
2J

∑
j

SαjβS
β

jα (4.3)

with

Sαjβ ≡ η
†α
j ηjβ (4.4)

and then mapping into tJV operators as follows:

η
†a
j ηjb → ψ

†a
j ψjb

η
†0
j ηj0 = 1 − η

†a
j ηja → 1 − ψ

†a
j ψja ≡ 1 − nj

η
†a
j ηj0 → exp

[
iπ

j−1∑
l=1

nl

]
ψ

†a
j (1 − njǎ).

(4.5)

Here ǎ denotes the other index, i.e. 1̌ = 2 and 2̌ = 1. Note the familiar Jordan–Wigner string
operator in the last line of equation (4.5) which turns the right-hand side into a commuting
(bosonic) object. It may be verified that the mapping of equation (4.5) respects the SU(3)
commutation relations:

[Sαjβ, S
γ

kε] = δjk[δ
γ

β S
α
jε − δαε S

γ

jβ]. (4.6)

Using equation (4.5), it is straightforward to check that the Hamiltonian of equation (4.3) maps
into the tJV Hamiltonian with t = 1, J = 2 and V = 3/2. If the SU(3) Hamiltonian is
written with periodic b.c.’s then we obtain the tJV model with b.c.’s that are periodic when the
total number of electrons is even but anti-periodic when the total number is odd. Furthermore,
the density of electrons must be fixed at 2/3 (and the total spin at 0) to correspond to the
SU(3)-invariant ground state.

It is also interesting to consider the continuum limit of the SU(3) spin chain using Abelian
bosonization, rather than the non-Abelian bosonization used in the previous section. This
amounts to representing theSU(3)1 WZW model in terms of two free bosons, a correspondence
which is consistent with the central charge c = 2. The two bosons can then be identified with
the charge and spin bosons that are familiar in the continuum limit of the Hubbard or tJV
models. We can then determine the compactification radii of the charge boson as well as that
of the spin boson at the SU(3)-invariant point. (The result for the spin boson is the well-known
value corresponding to SU(2) invariance.) At these special radii, the continuum two-boson
model becomes equivalent to the SU(3)1 WZW model.

The Abelian bosonization of the continuum limit field theory for the η fermions introduces
three boson, φα for the three fermion fields. These may be rewritten in terms of a more
convenient basis: φ, φc and φs, defined as:

φ ≡ φ1 + φ2 + φ0√
3

φc ≡ φ1 + φ2 − 2φ0√
6

φs ≡ φ1 − φ2√
2

.

(4.7)

φ represents the pseudo-charge boson in the three-component η field theory. The Hubbard
interaction in the η theory produces a gap for φ which may be dropped from the Hamiltonian.
φc is the charge boson in the two-component ψ field theory and φs is the SU(2) spin boson.
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To determine the radius of the charge boson we may write down the resulting bosonized form
for various operators and compare to the standard result. For instance,

ψ
†
L1ψR1 ∝ ei

√
4πφ1 → ei[

√
4π/3φ+

√
2π/3φc+

√
2πφs]. (4.8)

We expect the Hubbard interaction to produce a non-zero expectation value:

〈ei
√

4π/3φ〉 �= 0 (4.9)

so we may drop the first term in the exponent in equation (4.8). On the other hand, if we had
started from the ψ fermion model (the ordinary two-component Hubbard model) we would
have written

ψ
†
L1ψR1 ∝ ei[φc/Rc+φs/Rs]. (4.10)

In the non-interacting limit Rc = Rs = 1/
√

2π . SU(2)-invariant interactions renormalize
Rc, but not Rs. Comparing equation (4.10) to (4.8) we see that the SU(3)1 WZW model, the
continuum limit of the SU(3)-invariant tJV model, has

Rc =
√

3/2π. (4.11)

In the notation of Kane and Fisher, this corresponds to

gσ = 2 gρ = 2/3. (4.12)

At this value of Rc, ψ†
L1ψR1 has scaling dimension 2/3, corresponding to the 11 component of

the SU(3)1 WZW field, g11. Here we have used the fact that the SU(3) symmetry protects
the radius of the charge (as well as spin) boson from renormalizing as the Hubbard interaction
is increased to ∞. Thus we see that the spinful Luttinger liquid model at the special values
of gρ and gσ where it was solved exactly by Yi and Kane [3] has a hidden SU(3) symmetry.
This provides some understanding of the solvability at this special point and suggests that the
SU(3) approach used here is the most natural way of studying the problem.

5. SU(3) symmetry breaking

A natural question to ask, at this point, is what happens if we allow boundary interactions that
break the SU(3) symmetry down to SU(2) × U(1)? This would correspond to starting with
the SU(3)-invariant tJV model in the bulk but then allowing arbitrary strength hopping, spin
exchange and Coulomb repulsion on the modified links, for example. Alternatively, we could
apply an SU(3) ‘field’ which favours holes over electrons at one or more sites. Referring to
equation (3.24), we see that in addition to the SU(3)-invariant relevant operator at the mixed
fixed point there is also one relevant operator transforming under the adjoint representation of
SU(3). This contains one SU(2)×U(1) singlet field, the 3–3 component of the adjoint field,
φ33. There are also two marginal operators with the same SU(3) transformation properties.
We expect that these correspond to interactions that break both parity and SU(3). This follows
from assigning an odd parity quantum number to the Potts operator ε which appears as a
factor in these marginal operators. It is interesting to consider what happens in the case of two
weakened links, on (−1) – 0 and 0 –1, if we then apply a ‘field’ (i.e. local potential) at the origin,
thus respecting the parity symmetry. It seems plausible that this is a relevant perturbation and
generates the operator φ33. It is clear that a large local potential at the origin will lead to a
trivial fixed point. A positive potential, favouring a hole at the origin, gives the open fixed
point, corresponding to zero conductance for spin and charge. On the other hand, a negative
potential, favouring one electron at the origin, produces a trivial but non-SU(3)-invariant fixed
point, as argued by Kane and Fisher [2]. The single electron at the origin acts as a Kondo
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impurity. Since gρ < 1, it blocks charge transport through the origin but allows spin transport.
This corresponds to a phase with perfect transmission for spin but perfect reflection for charge.
The non-trivial, mixed, critical point is sitting at a resonance, in between these two stable
fixed points. Kane and Fisher identified their non-trivial resonant fixed point as an unstable
fixed point separating precisely these two stable phases. Remarkably, SU(3) symmetry (at the
boundary as well as in the bulk) puts the system exactly on resonance.

We obtain an analogous result by considering the case of one strengthened link with
breaking of SU(3) symmetry. It is instructive to consider the effect of the SU(3) symmetry
breaking in the limit where J ′ → ∞. Then, the 3̄ representation is projected out on the sites
0 –1. The three states of the 3̄ representation consist of an SU(2) doublet, with one electron (of
either spin) hopping back and forth between sites 0 and 1 in a zero momentum state, and of an
SU(2) singlet state with one electron on site 0 and one electron on site 1. In other words, we may
either increase t to favour the doublet state or increase J to favour the singlet. SU(3) symmetry
breaking favours either the doublet or the singlet. In the case where the singlet is favoured we
again get the open fixed point since there is zero charge or spin transport through sites 0 –1 in
this case. However, when the doublet is favoured the single electron shared by sites 0 and 1
again acts like a Kondo impurity, allowing spin transport but not charge transport. Again we
expect flow to a fixed point with perfect transmission for spin but perfect reflection for charge.

We also consider breaking of the SU(3) symmetry down to SU(2)×U(1) in the bulk. This
corresponds to the tJV model with general parameters and chemical potential. The relevant
boundary operator, φ33, discussed in the previous paragraph will remain relevant for a range
of bulk anisotropy (although with anisotropy-dependent scaling dimension) and will generally
be present in the effective Hamiltonian, unless fine-tuning is done. The stable fixed points are
the two trivial ones discussed in the previous paragraph. A non-trivial fixed point appears as
an unstable ‘resonance’ critical point. The critical exponents at this non-trivial critical point
should vary continuously with bulk anisotropy. However, they are only known at the SU(3)
symmetric point (and at two other points where the non-trivial critical point merges with one
of the trivial critical points, using the ‘ε’ expansion [2]). Thus we see that the SU(3)-invariant
spin chain has the very special property that the non-trivial critical point is stabilized by a
symmetry. This SU(3)-invariant spin chain (or equivalently tJV model) would thus provide
a convenient model for numerical study of this non-trivial critical point.

It is also interesting to consider a different type of SU(3) symmetry breaking: SU(3) →
SO(3) such that the 3 representation of SU(3) transforms under the triplet (j = 1)
representation of SO(3). As shown by Itoi and Kato [16], this symmetry-breaking pattern
occurs in ordinary SU(2) spin–1 spin chains with biquadratic as well as bilinear exchange
interactions:

H = J
∑
j

[cos θSj · Sj+1 + sin θ(Sj · Sj+1)
2]. (5.1)

The model with θ = π/4 is exactly equivalent to the SU(3) spin chain. Varying θ corresponds
to this pattern of SU(3) symmetry breaking in the continuum limit SU(3)1 WZW model.
Only marginal symmetry-breaking interactions are generated in the effective Hamiltonian.
In the case θ > π/4 these can be shown to be marginally irrelevant [16]. The remarkable
conclusion is that the S = 1 chain has a gapless phase for all π/4 < θ < π/2. (On the other
hand, for −π/4 < θ < π/4, the system goes into the Haldane gap phase.) The effective
Hamiltonian of the gapless phase is the SU(3)1 WZW model, up to logarithmic symmetry-
breaking corrections. Now let us consider the effect of this pattern ofSU(3) symmetry breaking
in the impurity models. Noting that the 8 representation of SU(3) decomposes into the direct
sum of spin j = 2 and j = 1 representations, with no SO(3) singlets, we conclude that no
relevant or marginal operators are allowed in the effective boundary Hamiltonian at the mixed
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critical point, even when the SU(3) symmetry is broken down to SO(3). Thus the boundary
critical phenomena that we have elucidated for the SU(3)-invariant model should also occur
in the general bilinear–biquadratic spin-1 chain, with bulk couplings π/4 < θ < π/2. This
holds out the possibility of experimental observation of these critical phenomena.

6. Connection with the Kondo model and quantum Brownian motion and extension to
SU (n)

There is clearly a close connection between the RG flows that we have discussed in the SU(3)
spin chain and those in the SU(3) two-channel Kondo model. As already mentioned below
equation (3.17), starting from the case of two equal weak links is equivalent to the RG flow
from weak coupling in the Kondo model, with the two decoupled chains on either side of the
central spin acting as the two channels. In the continuum limit the correspondence is also clear
from the occurrence of the SU(3)2 WZW model. The mixed critical point in the spin chain
corresponds to the non-trivial overscreened fixed point in the Kondo model. (For a discussion
of this model, see [14, 15].) In both models this fixed point can be obtained by fusion with
the 3 representation operator in the SU(3)2 WZW model. However, the phase diagram at
stronger coupling (beyond the non-trivial critical point) is different in the two models. In the
spin chain, at stronger coupling we encounter the (unstable) uniform fixed point and then at
infinite coupling the open fixed point. In the Kondo model, on the other hand, the only other
fixed point is expected to be the unstable overscreened one at infinite coupling. We also remark
that breaking the reflection symmetry, so that one weak link is of different strength than the
other, is equivalent to channel symmetry breaking in the two-channel Kondo model. This is a
relevant perturbation at the non-trivial fixed point in both cases.

It is also worth remarking in more detail on the connection between the boundary critical
phenomena that we have been discussing in the SU(3) spin chain and that in the model of
quantum Brownian motion (QBM) in [4]. The latter model has two massless bosons, defined on
the half-line, with boundary sine-Gordon interactions. The SU(3) spin chain can be regarded
as having four left-moving massless bosons on the half-line, corresponding to the central charge
4 in equation (1.4). The SU(3)2 WZW model can be written as a conformal embedding of
two free bosons (corresponding to the maximal Abelian subgroup of SU(3)) together with a
c = 6/5 conformal field theory which can apparently be regarded as the Z(5)

3 CFT discussed
in [4]. This, together with the Potts model, (c = 4/5) comprises the two free bosons (c = 2)
occuring in the QBM model. Since the extra two free bosons of the spin chain do not occur in
the effective Hamiltonian ifSU(3) symmetry (or even itsU(1)×U(1) subgroup) is maintained,
there is a correspondence between RG flows in QBM and in the spin chain. The Dirichlet,
Neumann, Y andW fixed points in the QBM model correspond, respectively, to open, uniform,
mixed and new fixed points in the spin chain. In both models all these fixed points can be
constructed by fusion with the same operators in the Potts sector starting from the Dirichlet
(i.e. open) fixed point.

Finally, we remark that most of the considerations of this paper can be extended to the
general case of SU(n) ‘spin’ chains. After regarding the right-movers as a second branch of
left-movers, we can again introduce a conformal embedding:

SU(n)1 × U(n)1 = SU(n)2 × Zn (6.1)

where Zn refers to the Zn parafermion conformal field theory. Non-trivial critical points can
again be constructed by the fusion method and given a physical interpretation in these lattice
models. These fixed points have already been discussed in the context of quantum Brownian
motion [3, 4].
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